
Towards a New Generation of Software Design
Environments: Supporting the Use of Informal and Formal

Notations with OctoUML

Empirical Study

Rodi Jolak, Boban Vesin, Marcus Isaksson, Michel R. V. Chaudron
Joint Department of Computer Science and Engineering

Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden

{jolak,vesin,chaudron}@chalmers.se
imarcus@student.chalmers.se

ABSTRACT
Software architects seek efficient support for planning and
designing models. Many software design tools lack flexibility
in combining informal and formal design. In this paper, we
present OctoUML, a proof of a concept of a new generation
software design environment that supports an effective soft-
ware design process. The system provides options for collab-
orative software design and different input methods for cre-
ation of software models at various levels of formality. The
design and architecture of OctoUML are also presented. The
evaluation shows that OctoUML provides a user-friendly en-
vironment and has the potential to effectively support the
activities of the designers.

CCS Concepts
•Software and its engineering → Model-driven software
engineering; Design languages; Unified Modelling Language
(UML); System modelling languages;

Keywords
Sketching; Informal and Formal Desing; Recognition; Multi-
touch; Design Environment, UML

1. INTRODUCTION
As software systems are gaining increased complexity, the

importance of efficient software design tools is also increas-
ing. Software models change frequently and are quite often
updated by many designers simultaneously [3]. These mod-
els should present a description of systems at multiple levels
of abstraction and from different perspectives. Therefore, it
is crucial to provide software design tooling that provides
possibilities for efficient and collaborative development as

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

c© 2016 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

well as options for creation and evolution of software mod-
els and architectures.

Sketches, or depictive expressions of ideas, pre-date writ-
ten languages by thousands of years [18]. Many designers
tend to sketch their initial ideas on the whiteboard [19].
These sketches present an intuitive way to prototype, com-
municate and record their thoughts. Sketches can facilitate
discovery of new objects and foster new design ideas [17].
They effectively support the process of software design and
serve designers to inspect and develop one design idea as
well as reflect on some other alternatives [12].

On the one hand, whiteboards are commonly used for
sketching initial software design, quite often by many peo-
ple simultaneously [1]. They support informal design and
do not constrain the notation being used. However, stan-
dard whiteboards lack of integration with subsequent soft-
ware elaboration tools. Hence, re-modelling is difficult and a
time-consuming task. On the other hand, CASE tools (e.g.
StarUML, Rational Rose, Enterprise Architect, etc.) pro-
vide means to store and modify designs. However, they sup-
port one or more formal notations and hence restrictively re-
quire designers to use those specific notations for modelling.
Actually, designers often sketch and use ad hoc notations
that rarely adhere to standards like the Unified Modelling
Language UML [14].

In previous work, we presented our vision on a new gen-
eration of software design environments [4]. One of the
characteristics which we proposed for such environments is
that they should be capable of supporting both informal
and formal modelling. In other words, they would combine
the advantages of both whiteboards and CASE tools, and
therefore be able to bridge the gap between early design
process (when designers often sketch their ideas) and for-
malization/documentation process. To realize our vision, we
developed a software design environment called OctoUML1.
This environment can be run using a number of input devices
ranging from desktop computers over large touch-screens to
large electronic whiteboards. It allows simultaneous creation
of both informal freehand sketches (using fingers or styluses)
and formal computer-drawn notations, e.g., UML class dia-
grams. We have enriched our tool with some features, func-
tionalities and services in order to support designers’ activ-

1demo video: https://goo.gl/PmuUf8



ities and provide a practical and inspiring user experience.
Further details on these aspects will be described in Section
3. To assess our concept, we asked some subjects to evaluate
OctoUML and give feedback on its usability. The following
questions are addressed:

• Does our tool provide a usable environment consider-
ing issues like ease of use, efficiency and user satisfac-
tion?

• Does support for mixing informal and formal notation
better support the software design process?

This paper is organized as follows: section two describes
the related work. Illustration of our approach for supporting
exploratory and collaborative software design is presented in
section three. We provide the design architecture details of
OctoUML in section four. Evaluation and results are pre-
sented in section five. We discuss the results in section six.
Threats to validity are presented in section seven. Finally,
we conclude the paper and illustrate our plan for future work
in section eight.

2. RELATED WORK
CASE tools support software development activities such

as diagramming, code generating and documentation [8].
However, software designers consider such formal tools overly
restrictive and limitative of their expressiveness [5, 8, 9]. On
the other hand, whiteboards are rather simple to use. In
fact, they are frequently used by software designers due to
their role in promoting creativity, idea generation and prob-
lem solving [6]. E-whiteboards provide the perspective for
better software design support by permitting the manage-
ment, control and maintenance of the contents [11, 5].

Mangano et al. [11] identified some behaviors that occur
during informal design. In particular, designers sketch dif-
ferent kind of diagrams (e.g. box and arrow diagrams, UI
mockups, generic plots, flowcharts, etc.) and use impromptu
notations in their designs. The authors implemented an in-
teractive whiteboard system (called Calico) to support these
behaviors and identified some ways where interactive white-
boards can enable designers to work more effectively.

Wüest et al. [21] stated that software engineers often use
paper and pencil to sketch ideas when gathering require-
ments from stakeholders, but such sketches on paper often
need to be modelled again for further processing. A tool,
FlexiSketch, was prototyped by them to combine freeform
sketching with the ability to annotate the sketches inter-
actively for an incremental transformation into semi-formal
models. The users of FlexiSketch were able to draw UML-
like diagrams and introduced their own notation. They were
also able to assign types to drawn symbols. Users liked the
informality provided by the tool, and stated that they would
be willing to adopt it in practice.

Chen et al. have developed SUMLOW [5], a sketching-
based UML design tool for electronic whiteboard technol-
ogy. It allows the preservation of hand-drawn diagrams and
supports the manipulation of them using pen-based actions.
UML sketches can be formalized and exported to a 3rd party
CASE tool.

Damm et al. [8] conducted user studies in order to under-
stand the practice of software modelling. They observed
that designers alternate between whiteboards and CASE
tools, extend the semantics of the notations to support the

design activities and allow expressiveness, sketch new ideas
informally, and actively collaborate when they work in teams.
The authors considered that a usable modelling tool should
be designed to come across the aforementioned observed be-
haviours. They developed a tool called Knight. Knight sup-
ports informal and formal modelling using gestures on an
electronic whiteboard. In order to achieve intuitive interac-
tion, Knight uses composite gestures and eager recognition
of hand-drawn elements. Damm et al. showed that informal
drawings were temporary and usually erased after producing
the formal diagram.

Magin and Kopf [10] created a multi-touch based system
allowing users to collaboratively design UML class diagrams
on touch-screens. They have also implemented a new al-
gorithm to recognize the gestures drawn by the users and
to improve the layout of the diagrams. However, their tool
does not allow for informal freehand sketching of arbitrary
notations.

Baltes and Diehl [1] examined the usage of sketches in
software engineering activities by conducting an exploratory
study in software companies. The results showed that the
majority of the sketches were informal, and the purposes
of sketches were related to modelling, explaining or under-
standing. Baltes and Diehl also revealed that the sketches
were archived digitally for re-visualization and future use.
Like us, they think software design tools should enable in-
formal design sketching.

3. APPROACH
Our motivation for creating OctoUML is to provide a more

intuitive, inspiring and efficient tool to support exploratory
and collaborative software design. Key innovations of our
approach are: (i) enabling users to create and mix both
informal hand-drawn sketches and formal computer-drawn
notations at the same time on the same canvas, (ii) providing
a selective recognition mechanism that is used to transform
hand-drawn sketches into formalized contents, and (iii) en-
abling of multi-user support on a single input device. In the
next subsections, we describe those novel aspects in more
detail. Table 1 shows the differences between our approach
and the related work.

Tool Notation : Informal(IF)/Formal(F) Recognition Multi-touch
Flexisketch IF (hand-drawn) predict symbols based N/A

on incremental learning
SUMLOW IF and F, but not simultaneously holistic recognition N/A
Knight IF and F, but not simultaneously eager recognition N/A
Calico IF (hand-drawn) beautification of shapes N/A
OctoUML mix of IF and F (simultaneously) selective recognition enabled

Table 1: Comparison of OctoUML with some other
tools mentioned in the Related Work section

3.1 Informality and Formality
Based on studies done by [8, 11, 12], we report some com-

mon practice behaviours that occur during software mod-
elling meetings:

• Designers combine informal and formal models.

• Designers often alternate between CASE tools and white-
boards.

• Designers prefer all-purpose sketches which refer to
many scenarios over sketches dedicated to a single sce-
nario.



Figure 1: Combination of different notations on the
same canvas

• Sketches rarely follow notational convention.

• Sketches are used at different levels of abstraction.

• Designers sketch different types of diagrams with dif-
ferent perspectives.

• Designers extend formal notations in order to explain
their ideas to others.

Whiteboards support informal design by ensuring the users
a total freedom in creating and using a variety of modelling
notations. For example, informal hand-drawn sketches can
be used to express abstract ideas representationally, allow
checking the entirety and the internal consistency of an idea
as well as facilitate the development of new ideas [17]. In-
formal sketches, as well as various informal tools are used by
software developers during their work activities [5, 11, 20].
However, some tasks like model transfer and persistence are
difficult and require a redundant work by re-drawing the de-
sign solution using a Computer-Aided Software Engineering
(CASE) tool. CASE-tools provide a limited set of mod-
elling notations, hence restrict designers’ expressiveness by
imposing the notation that can be used. Modelling tools
should be holistic in order to support software designer’s
imagination and creativity. To that end, our tool allows a
simultaneous creation of both informal and formal notations
on the same canvas. The informal notations can be created
using free-hand sketches, while the formal notations can be
either hand-drawn following a specific syntax or created us-
ing computer-drawn ready-to-use elements available in the
menu. At the moment, and for the creation of formal ele-
ments, our tool mainly supports UML class diagrams, but
in the future we aim to support other types of UML dia-
grams. Figure 1 illustrates the main canvas of our tool. It
shows how our tool allows the combination of informal and
formal notations on the same canvas. Moreover, it shows
how designers can transform the notations from one state to
another i.e. from informal to formal and vice versa.

3.2 Recognition
Walny et al. [20] demonstrated that sketches have a life-

cycle. In particular, a sketch starts as an informal repre-
sentation of one idea and later on ends up having a formal
representation. To facilitate that process as well as support
tasks like: model transfer to third-party CASE tools, code
generation and model documentation, our tool supports the

transformation of UML hand-drawn elements to formalized
computer-drawings and vice versa at any time during the
modelling sessions. This has been made available using Pa-
leoSketch, a primitive sketch recognition system [13]. There
are two aspects that favor the flexibility and elasticity of the
recognition process. Firstly, we allow users to select what
they want to recognize in advance. Secondly, users can use
undo/redo commands in order to move easily between the
two forms; sketchy and formal.

3.3 Layering and Multi-touch
Having been inspired by the recent version of the Altova

UModel tool 2, we decided to equip our tool with a layering
mechanism. In particular, the software design is part of one
layer which we call the formal layer. While another layer, the
informal layer, contains the informal sketchy elements e.g.
hand-written comments, illustrative drawings, highlighting
arrows or circles, etc. The user can then select to see com-
bined layers or layers in isolation. A key advantage of such
layers is that they allow the isolation of informal and for-
mal elements. As a consequence, designers will be able to
move and edit the content of each layer independently with-
out disturbing the rest of the design. For instance, users
might want to archive, print or share the formal designs
without including the sketchy elements. In that case, the
formal layer can be a solution for them. On the other hand,
having the two layers combined could help reveal some ex-
isting ambiguities in diagrams as well as give more insights
to increase one’s understanding of concepts, mainly, during
diagram reviewing cycles. Baltes and Diehl stated that quite
often two or more people are involved in sketching when the
whiteboard is used as a medium [1]. We enabled our tool
to support multi-touch. Multi-touch is an interaction tech-
nique that permits the manipulation of graphical entities
with several fingers at the same time. This option allows
concurrent collaborative modelling. In particular, it enables
two or more designers to simultaneously work on the same
canvas of the same device, especially when the device is an
interactive whiteboard or a large touch screen.

3.4 Other features
CASE tools are better than whiteboards when we con-

sider some aspects such as undo/redo and re-sizing utilities.
For that, we enabled our tool to support the aforementioned
features in order to allow designers to easily correct mistakes
and have liberty to change the size of the elements. Some-
times designers complain about the limited size of tools’
modelling space or canvas which may not be enough to cap-
ture all their design ideas. To overcome this inconvenience,
the drawing canvas of our tool supports panning and zoom-
ing in/out actions. Panning allows users to drag the canvas
in all directions in order to find more space for their designs.
In addition, zooming helps to change the scale of the can-
vas, hence to enhance the visibility and readability of the
designs.

4. DESIGN
In this section we present the current architecture of Oc-

toUML. The architecture is organized in a way to effectively
fit with complex business work-flows, data, and security
needs as well as to allow for future integration of different
modules and other enterprise applications.
2http://www.altova.com/umodel.html



Figure 2: Architectural Components of OctoUML
(currently implemented components are presented in green)

The key architectural components of OctoUML are pre-
sented in Figure 2. The environment contains three major
components: UI component, Data cloud and Services. The
current version of the system offers only the UI and data
cloud components. Additional services will be added during
future development.

UI component consists of two separated but interconnected
parts: Presentation manager and Input unit. The Presenta-
tion manager provides means for performing stylus or touch-
based input commands on devices being used. Drawing lay-
ers include support for both informal and formal modelling
layers. Depending on the chosen layer, users are presented
with an appropriate toolbar. The Command tools are re-
sponsible for transferring the inputs from users to different
controllers. The Graph controller allows switching between
different input techniques as well as combining of different
layers. The Input unit is responsible for processing different
inputs. In particular, a Sketch recognizer is provided to rec-
ognize and transform informal models into formal concepts,
and hence allows to maintain and transfer the designs for
further processing tasks. A Multi-touch controller captures
and coordinates the inputs from different touch-points. All
the program data are saved and stored in the Data cloud.
Our tool uses a set of data structures to manage and main-
tain the sketched elements, formalized designs, and session
control for users. The modelling process and dynamic as-
pects of the system are presented in Figure 3.

5. EVALUATION
In order to answer the research questions presented in

Section 1, we prepared user studies. Sixteen subjects were
engaged in a design assignment. The assignment was to cre-
ate a UML class diagram of a given scenario using our tool.
To give a global overview of the subjective assessment of our
tool’s usability, we asked our subjects to answer the System
Usability Scale (SUS) questionnaire [2]. Furthermore, we
planned semi-structured interviews using both closed and
open questions. The interviews were held after the comple-

tion of the design assignment. Our main concern was to get
feedback from the participants regarding their experience
in using OctoUML, so we focused on qualitative data more
than quantitative data. We followed the grounded theory
methodology [7], and used NVivo3 in the qualitative data
analysis process. More details together with the results are
reported in the following subsections.

5.1 Participants and Modelling Expertise
Sixteen software engineering students and researchers were

involved in doing the assignment and subsequently the in-
terviews. In particular, there were four master students,
ten PhD students and two post-doctoral researchers. Five
participants have an experience in industry for some period
of time. Twelve people worked on the design task in pairs,
while the rest worked individually. Overall, the participants
are experts in software modelling and have some experience
in using UML. In fact, nine participants claimed to have high
expertise in software modelling, five have a moderate exper-
tise, while only two have low expertise. All participants
believe that software design is a critical task for successful
software development and evolution. In previous occasions,
all but one participant did software modelling with other
people in teams (collaborative modelling). The participants
have a practical experience with a variety of modelling tools.
These tools range from whiteboards, pen&paper to CASE
tools like Enterprise Architect, Visual Paradigm, Dia, Ar-
goUML and Papyrus.

5.2 Design Task
We formulated a simple design problem, and asked the

participants to design a domain model class diagram solu-
tion of it using OctoUML. Before starting with the task, we
gave the participants a brief introduction regarding the fea-
tures and functionalities of our tool. We directly observed
the design processes and took notes. When the participants
asked some specific questions about the design assignment,

3http://www.qsrinternational.com/



Figure 3: The Modelling Process
(currently supported activities are presented in green)

we told them that it is up to their interpretation. They
could, however, ask questions concerning the design envi-
ronment e.g. how to use certain tools. The participants
did not get any help unless they asked for it. An interac-
tive whiteboard was chosen as an input medium, and the
design sessions were video-recorded. The text of the design
assignment is presented in the following paragraph.

E-Learning System. The system is used by teachers, stu-
dents and an administrator (who is also a teacher). One
teacher is responsible for many courses. Consider that courses
consist of many topics. Students can enroll into different
courses. There is a news section within the system. Teach-
ers add news for a specific course and the students can read
them. Every course ends with an evaluation test. Teachers
create a test and the students have to do it. The students
get one of these grades: fail, pass, good, or very good.

5.2.1 Design Task Observations
While carrying out the design task, the participants were

observed in order to understand their activities. This was
done in two different ways: First, we directly observed the
behaviour of the participants as they were performing the
task and took notes. Second, the participants were recorded
via a digital video-camera. This let us observe their be-
haviour indirectly through records of the task. The notes
which we took were expanded by transcribing elements of
the video recordings. At the beginning of the task the par-
ticipants spent around one minute reading the assignment,
then they proceeded with designing the solution. While car-
rying out the design task, some participants first created
many UML classes then they associated them with differ-
ent kind of relations. Other participants followed another
strategy by creating two classes in the first place, then, they
defined the relation between the two classes before contin-
uing to create other UML classes. Even when two people
were working on the same design at the same time, they
rarely interacted with the e-whiteboard at the exact same
time. Most of the participants tended to create the classes
sequentially, and they discussed the properties of one class
before proceeding with the creation of another class. Fur-
thermore, they often divided the work between themselves,
e.g. one was interacting with the tool to create classes, and
the other one was reading the assignment as well as pro-
viding ideas for the solution. The participants were given
a brief introduction about functionalities of the tool. Nev-
ertheless, during the design task, some of the participants
were confused and hesitant about using some features be-

ing provided by our tool. This was actually observable at
the beginning of the task, but seemed to be overcome later
on. In fact, the participants became more confident as they
were gradually and progressively interacting with the tool.
Moreover repeating some actions, such as selection and cre-
ation of classes, let them in some manner experience our
environment’ functionalities.

5.3 SUS Questionnaire
The System Usability Scale is an easy, standard way of

evaluating the usability of a system [2]. It is a form contain-
ing ten statements, and users provide their feedback on a
5-point scale (1 is strongly disagree and 5 is strongly agree).
It effectively differentiates between usable and unusable sys-
tems by giving a measure of the perceived usability of a
system. It can be used on small sample sizes and be fairly
confident of getting a good usability assessment [16]. The
participants were given the forms directly after they finished
with the design task. We considered the SUS score as a“pre-
liminary feedback” on the usability of our tool. However, in
order to consolidate the current findings, more people will
be involved in testing our tool and answering the SUS ques-
tionnaire.

5.3.1 SUS Result
All sixteen participants filled out the SUS questionnaire.

We calculated the SUS score reported by each participant.
After that, we calculated the average of the usability values
of all participants to obtain the overall OctoUML usability
score4. The lowest score was 65 and the highest was 95,
with an average score of 78.75. It falls at around the 80th
percentile, and would result in a grade of a “B” which is a
high usability score according to [15].

5.4 Interviews
After answering the SUS questionnaire, each participant

was involved in a semi-structured interview. The conversa-
tions were recorded using a digital voice recorder. The in-
terviewers took some notes which were expanded afterwards
by transcribing the audio recordings. Both closed and open
questions were used, and respondents’ answers were quanti-
tatively and qualitatively analyzed.

5.4.1 Interviews’ Results
Several threads run through the interviews. Such threads

are categorized as themes and reported subsequently.

4https://goo.gl/uwlwIp



5.4.1.1 Tool Usability

Ease of Use. All participants pointed out that our tool is
intuitive, simple and easy to use.

“Easy to get started with, I do not have to under-
stand the UML-standard”, “It’s simple to use”,
“Easy to change things”

Learn-ability. The participants also stated that the tool is
easy to understand and learn.

“easy to understand”,“Easy to grasp what is what”,
“Intuitive for the most part”, “So easy to learn”

Efficiency. We let our environment inherit the fluidity and
immediacy of a standard whiteboard. Furthermore, we wanted
to maintain the recognition process to be as smooth and fast
as possible. Some participants were impressed by the fluidity
and immediacy of our tool in drawing and creating notations
as well as in recognizing the sketchy elements.

“Very quick to draw classes and associations com-
pared to CASE tools”, “Liked it because it was
very fast”, “Not loading while recognizing, which
is good”, “Very smooth and quick recognition”

Satisfaction. The basic functions of our tool met the expec-
tations of most of the participants. Overall, the participants
liked our tool. Two participant highlighted the eligibility of
our tool in collaborative team modelling. One participants
stated that he likes the “selective recognition” mechanism.

“Very straightforward once you get used to it”,
“It is really good for team design”, “Nice that you
select what to recognize”

However, some challenges in tool usability were identified.
one participant asked for more flexible switching between
informal and formal input modes .

“I did not like how I switch between input modes”

Some of the participants did not like the manner by which
the elements are being selected i.e. by activating a dedicated
button.

“Should select by just clicking on element without
selecting the selection tool first”

One participant stated that “typing-in” classes name and
their properties using the virtual keyboard was inconvenient
task due to the time that it takes, and asked us to find a
better solution.

“Typing-in is a bit slow”

We previously mentioned that our tool mainly supports UML
class diagrams when creating formal “computer-drawn” ele-
ments. Some participants expressed the need of being able
to create other types of UML diagrams as well as having
more tool options.

“I want more features, options, more types of di-
agrams”

We consider those challenges, hence they will be used to-
gether with the overall feedback of the users as a basis for
future improvement of our tool.

5.4.1.2 Informal and Formal Notation

There was a strong belief among the participants (12 people
agreed, 2 were undecided and 2 disagreed) that informal
notations (i.e. sketches) support the formal design. Sketches
can be used to interconnect different components

“define the components involved and the interac-
tions among them”.

Sketches are valuable artefacts beyond being just explorative
drawings

“obtain already a formal document, not just a
sketch”.

There was also a strong belief among participants (11 peo-
ple agreed, 2 were undecided and 3 disagreed) that having
sketches beside the formal design can allow for a better ex-
pression of ideas

“map out the domain of the functionality and
make sure everyhting is been covered”, “get an
idea of how things fit together, also notice bad
ideas”.

Eleven people claimed that sketches can enhance the under-
standability and readability of the formal designs

“it is mostly for myself to get a clear understand-
ing”, “it is helpful to make you understand what
you are gonna build”

On the other hand, one person said that having sketches
beside the formal design could complicate the diagram

“No, sketching will introduce complexity”.

Half of the participants think that being able to sketch be-
side creating formal designs in one tool can replace the need
of sketching on a whiteboard or a paper.

“Yes, you could perform all the functions that you
can do on standard whiteboard. Be able to quickly
show ideas, and you do not have to take pictures
of the whiteboard”.

While some participants claim that still people will not stop
using standard whiteboards as well as pen and paper. The
dependency on such tools, as the participants argued, arises
from their immediacy and ease of use as well as being at
easy disposal.

“No, because you will never remove the paper from
the office”, “right now still very dependent on pa-
per”

Sketching down thoughts and ideas on paper or whiteboard
when designing software is a common behaviour when de-
signing software. In fact, all participants do sketches to some
degree. Some participants mentioned that it depends on the
complexity of the problem

“I do not often sketch when it comes to simple
stuff ”.

According to the participants’ responses, the main purposes
of sketching are to:

i) understand problems and start to explore solutions



“to define the components involved and the
interactions among them”, “start putting the
solution together”

ii) brainstorm as well as explore ideas

“to brainstorm”, “to facilitate how to express
our ideas”, “to visualise what is in my head”.

iii) communicate and discuss their ideas

“give an explanation for other people about
the system or a specific problem”, “commu-
nication of ideas in teams”.

6. DISCUSSION
Before starting with the design task, the participants were

given a short introduction about our environment and its
functions. However, while we were observing the partici-
pants creating their designs, we noticed that they were not
very inclined to use the sketching feature which was illus-
trated during the short introduction. In fact, only six (out
of sixteen) participants used the sketching feature. We think
that the time of the introduction part was most likely not
enough to make the participants feel comfortable in using
free-hand sketches. Furthermore, the design problem that
we have chosen for the design task was simple and easy to
solve. We tried to simplify it as much as possible to make
it solvable in a short time. We believe that the simplicity
of the design task could have defeated the need of sketching
it up. The participants could easily get a good grasp of the
design task simply by reading it. However when we did the
interviews, the majority of the participants did agree that
being able to mix informal and formal notations could sup-
port the design process and flow, thus could bridge the gap
between the process of prototyping ideas on a paper and the
process of entering a formalized version of such ideas in a
CASE-tool. Next, we discuss the research questions based
on our interpretation of the results.

• RQ.1 Does our tool provide a usable environment con-
sidering issues like ease of use, efficiency and user sat-
isfaction?

OctoUML is designed to offer a usable interactive envi-
ronment. First we focused on understanding some common
practice activities that occur during software modelling ses-
sions. Then, we tried to consider and adopt some novel
interaction modalities which could interactively support the
design process. The interviews’ results show that the cur-
rent version of our tool is easy to learn, effective to use, and
provides an enjoyable user experience. Moreover, the re-
sults that we got from the SUS questionnaire on the usabil-
ity of our tool consolidate the previous findings. Of course
these results hold only for the device which is used as an
input medium, the interactive whiteboard. Other media
like tablets and standard PCs have different characteristics.
Tablets have a smaller interaction interface when compared
to interactive whiteboards, and this could raise some usabil-
ity challenges. To assess these challenges further tests on
different input media are required. On the other hand, our
tests revealed some usability challenges related to our sys-
tem. The main issue is the selection tool. The participants
had to click on a specific button to activate the selection

mode. According to some participants, that was not a user-
friendly choice. Moreover, we asked the participants for their
opinion about some new interaction techniques that could be
adopted by our environment in the future. These techniques
were appreciated by the participants and are discussed in the
conclusion and future work section.

• RQ.2 Does support for mixing informal and formal no-
tation better support the software design process?

In practice, software systems are becoming more and more
complex, and the design of complex systems needs more ef-
fort and hence more sophisticated designing tools. In such
cases, having the possibility to use informal notations be-
side the formal ones can better support designers’ activities
in understanding the problems, exploring solutions, brain-
storming and communicating ideas. This is in line with the
study of Mangano et al. [12]. They stated that informal no-
tations, i.e. sketches, allow software designers to discuss de-
sign alternatives as well as mentally simulate the behaviour
of complex systems.

Apart from the fact that our subjects did not sketch in-
formal elements frequently, the majority of them think that
being able to simultaneously create sketches and formal de-
signs in one design environment could support the design
process. Indeed, software designers often sketch their early-
design ideas on a paper. However, when they want to pre-
serve the design, they do a redundant work by re-drawing
the solution using CASE-tools. Furthermore, they may for-
get to include some sketched ideas in the design formaliza-
tion process.

There was a strong belief among the interviewees that hav-
ing the possibility to create informal elements, i.e. sketches,
assists the process of ideas expression and enhance the un-
derstandability of formal designs. The informal notations
can be used both in brainstorming sessions and while cre-
ating the formal design. In the former case, they are used
for design exploration and can be volatile. While in the
latter case, the informal elements could be used to sustain
and describe a specific design problem as well as support
the formal design in conveying and reinforcing the informa-
tion that they carry. Informal sketches, for example, may
have a very close mapping to the problem domain. As a
result, they could be valuable artefacts beyond being just
explorative means.

7. THREATS TO VALIDITY
Construct Validity. The design task was simple, specific

and easy to do. Moreover, it is relatively small compared to
real world design problems. This might limit the creativity
of the designers as well as influence the amount of discussions
and usability interactions. However, during the interviews,
we asked the participants to give their general opinion about
the efficiency of our tool when it comes to handling different
design problems that vary in size and complexity.

Internal Validity. None of our subjects was familiar with
our tool and its functions. To mitigate this, we gave the
participants a short introduction explaining the features of
the tool. Moreover, during the interviews, the participants
might want to please the interviewers by giving them a pos-
itive feedback. To mitigate this, we asked the participants
to answer the SUS questionnaire which allowed them to give
feedback anonymously.



External Validity. The participants being involved in both
the design task and the interviews may not represent the
general population of software designers. This could threaten
the generality of the results. However we involved people
with different backgrounds, modelling expertise and aca-
demical degrees.

8. CONCLUSION AND FUTURE WORK
Currently, most CASE-tools are modelling (or even di-

agramming) tools. Indeed, they lack support for the ma-
jority of design activities in which developers are engaged.
In this paper, we presented a proof of concept of a new
generation software design environment. Basically, our tool
allows for simultaneous creation of both informal freehand
sketches and formal computer-drawn notations. The users
of OctoUML can create software designs by performing sim-
ple intuitive touch gestures. Moreover, they can manipulate
the graphical entities with several fingers at the same time
thanks to the multi-touch technology being adopted by our
system. Furthermore, OctoUML supports the transforma-
tion of models from informal to formal at any time during
the design sessions. We evaluated our tool by conducting
user studies. The results show that OctoUML, as perceived
by our subjects, provides a usable environment in terms of
ease of use, efficiency and user satisfaction. Moreover, it
seems that giving the possibility to create informal and for-
mal notations in one software design environment could sup-
port both the design process and its flow.

Future Work. We will continue to realize our vision [4] of
a new generation of software design environment. OctoUML
will be equipped with microphones to record the spoken dis-
cussions, and a recognition system will be provided to inter-
pret users’ voice commands. To open up new opportunities
for remote interactive collaborative design, our tool will be
enabled to support remote collaborative sessions between
geographically distributed teams as well as in class room
environment between students and teachers. We also aim
to integrate OctoUML with other software engineering tools
to provide effective support for different development tasks
(e.g. requirements gathering, testing, coding and version-
ing) and analysis tasks (e.g. performance).

9. REFERENCES
[1] S. Baltes and S. Diehl. Sketches and diagrams in

practice. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, pages 530–541. ACM, 2014.

[2] J. Brooke et al. Sus-a quick and dirty usability scale.
Usability evaluation in industry, 189(194):4–7, 1996.

[3] M. R. Chaudron, W. Heijstek, and A. Nugroho. How
effective is uml modeling? Software & Systems
Modeling, 11(4):571–580, 2012.

[4] M. R. Chaudron and R. Jolak. A vision on a new
generation of software design environments. In First
International Workshop on Human Factors in
Modeling (HuFaMo 2015). CEUR-WS, pages 11–16,
2015.

[5] Q. Chen, J. Grundy, and J. Hosking. An e-whiteboard
application to support early design-stage sketching of
uml diagrams. In Human Centric Computing
Languages and Environments, 2003. Proceedings. 2003
IEEE Symposium on, pages 219–226. IEEE, 2003.

[6] M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko.
Let’s go to the whiteboard: how and why software
developers use drawings. In Proceedings of the SIGCHI
conference on Human factors in computing systems,
pages 557–566. ACM, 2007.

[7] J. Corbin and A. Strauss. Basics of qualitative
research: Techniques and procedures for developing
grounded theory. Sage publications, 2014.

[8] C. H. Damm, K. M. Hansen, and M. Thomsen. Tool
support for cooperative object-oriented design:
gesture based modelling on an electronic whiteboard.
In Proceedings of the SIGCHI conference on Human
Factors in Computing Systems, pages 518–525. ACM,
2000.

[9] J. Iivari. Why are case tools not used?
Communications of the ACM, 39(10):94–103, 1996.

[10] M. Magin and S. Kopf. A collaborative multi-touch
uml design tool. Technical reports, 13, 2013.

[11] N. Mangano, T. D. LaToza, M. Petre, and A. van der
Hoek. Supporting informal design with interactive
whiteboards. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
pages 331–340. ACM, 2014.

[12] N. Mangano, T. D. LaToza, M. Petre, and A. Van
Der Hoek. How software designers interact with
sketches at the whiteboard. Software Engineering,
IEEE Transactions on, 41(2):135–156, 2015.

[13] B. Paulson and T. Hammond. Paleosketch: accurate
primitive sketch recognition and beautification. In
Proceedings of the 13th international conference on
Intelligent user interfaces, pages 1–10. ACM, 2008.

[14] M. Petre. Uml in practice. In Proceedings of the 2013
International Conference on Software Engineering,
pages 722–731. IEEE Press, 2013.

[15] J. Sauro. A practical guide to the system usability
scale: Background, benchmarks & best practices.
Measuring Usability LLC, 2011.

[16] T. S. Tullis and J. N. Stetson. A comparison of
questionnaires for assessing website usability. In
Usability Professional Association Conference, pages
1–12, 2004.

[17] B. Tversky. What do sketches say about thinking. In
2002 AAAI Spring Symposium, Sketch Understanding
Workshop, Stanford University, AAAI Technical
Report SS-02-08, pages 148–151, 2002.

[18] B. Tversky. Visualizing thought. Topics in Cognitive
Science, 3(3):499–535, 2011.

[19] J. Walny, S. Carpendale, N. H. Riche, G. Venolia, and
P. Fawcett. Visual thinking in action: Visualizations
as used on whiteboards. Visualization and Computer
Graphics, IEEE Transactions on, 17(12):2508–2517,
2011.

[20] J. Walny, J. Haber, M. Dörk, J. Sillito, and
S. Carpendale. Follow that sketch: Lifecycles of
diagrams and sketches in software development. In
Visualizing Software for Understanding and Analysis
(VISSOFT), 2011 6th IEEE International Workshop
on, pages 1–8. IEEE, 2011.

[21] D. Wüest, N. Seyff, and M. Glinz. Flexisketch: A
mobile sketching tool for software modeling. In Mobile
Computing, Applications, and Services, pages 225–244.
Springer, 2012.


